Complementary eddy-current geometric formulations coupled with electric circuits

PAWEŁ DŁOTKO¹, <u>RUBEN SPECOGNA²</u>, FRANCESCO TREVISAN²

¹Jagiellonian University, Institute of Computer Science, Kraków, Poland, pawel.dlotko@uj.edu.pl ²Università di Udine, Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica, Udine, Italy, {ruben.specogna; trevisan}@uniud.it

1 Abstract

It is well known that when the efficient eddy-current formulations based on a magnetic scalar potential are employed in problems which involve conductive regions with holes, the so-called *thick cuts* are needed to render the boundary value problem well defined. Is has been already demonstrated, for example in [1-3], that thick cuts are representatives of the first cohomology group generators of the insulating region.

As pointed out in [1], thick cuts in the insulating region may be used to easily couple the T- Ω geometric eddy-current formulation with electric circuits. On the contrary, when considering the complementary A- χ geometric eddy-current formulation, thick cuts inside the conducting region have to be considered for this purpose, see [4].

New efficient algorithms to compute cohomology group generators have been developed in the last years. In this contribution, the results obtained by means of various reduction techniques [5-7] are investigated on real-sized meshes up to millions of tetrahedra.

Moreover, in most cases when there is the need to couple the A- χ formulation with circuits, a "toruslike" conductor is considered. In these cases, instead of using a costly cohomology computation, a linear complexity algorithm based on skeletonization plus Generalized Spanning Tree Technique (GSTT) [2-3] is introduced in [4]. Both skeletonization and GSTT may theoretically fail in some exceptional cases, which are extremely rare in practice in this application. Anyway, if the algorithm fails, pure cohomology computations are employed.

References

- R. Specogna, S. Suuriniemi, F. Trevisan, Geometric T Ω approach to solve eddy-currents coupled to electric circuits, Int. J. Numer. Meth. Engng. 74 (2008), 101–115.
- [2] P. Dłotko, R. Specogna, F. Trevisan, A homological algorithm for the automatic generation of cuts suitable for T-Ω eddy-current geometric formulation, Advanced Computational Electromagnetism (ACE) Seminar 2009, Accademia dei Lincei, Rome, Italy, 780–801, ISBN 978-952-15-2300-7, ISSN 1459-3270.
- [3] P. Dłotko, R. Specogna, F. Trevisan, Automatic generation of cuts on large-sized meshes for T-Ω geometric eddy-current formulation, Computer Methods in Applied Mechanics and Engineering (CMAME) 198 (2009), 3765–3781.
- [4] P. Dłotko, R. Specogna, F. Trevisan, Voltage and current sources for massive conductors suitable with the A-χ Geometric Formulation, IEEE Transactions on Magnetics, in press, doi: 10.1109/TMAG.2010.2043510.
- [5] M. Mrozek, B. Batko, Coreduction homology algorithm, Discrete and Computational Geometry 41 (2009), 96-118.
- [6] M. Mrozek, P. Pilarczyk, N. Żelazna, Homology algorithm based on acyclic subspace, Computers and Mathematics 55 (2008), 2395-2412.
- [7] T. Kaczynski, M. Mrozek, M. Slusarek, Homology computation by reduction of chain complexes, Computers and Mathematics 35 (1998), 59–70.